ARIMA
Synopsis
This operator trains an ARIMA model for a selected time series attribute.
Description
ARIMA stands for Autoregressive Integrated Moving Average. Typically an ARIMA model is used for forecasting time series.
An ARIMA model is defined by its three order parameters, p, d, q. p specifies the number of Autoregressive terms in the model. d specifies the number of differentations applied on the time series values. q specifies the number of Moving Average terms in the model.
An ARIMA model is an integrated ARMA model. The ARMA model describes a time series by a weighted sum of lagged time series values (the Autoregressive terms) and a weighted sum of lagged residuals. These residuals originates from a normal distributed noise process. The "integrated" indicates that the values of the ARMA model are integrated, which is equal to that the original time series values which the ARMA model describes are differentiated.
The ARIMA operator fits an ARIMA model with given p,d,q to a time series by finding the p+q coefficients (and if estimate constant is true, the constant) which maximize the conditional loglikelihood of the model describing the time series. For the optimization the LBFGS (Limited-memory Broyden-Fletcher-Foldfarb-Shanno) algorithm is used.
If chosing values for p,d,q, it is important that the conditional loglikelihood is only a good estimation for the exact loglikelihood if the number of parameters (sum of p,d,q) is not in the order of the length of the time series. Hence the number of parameters should be way smaller than the length of the time series.
How well a trained ARIMA model describes a given time series is often calculated with the Akaikes Information Criterion (AIC), the Bayesian Information Criterion (BIC) or a corrected Akaikes Information Criterion (AICC). The ArimaTrainer operator calculates these performance measures and outputs a Performance Vector containing the calculated values. An ARIMA model which describes a time series well has small information criteria.
This operator works only on numerical time series.
Differentiation
This operator is similar to other modeling operators, but is specifically designed to work on time series data. One of the implications of this is, that the forecast model should be applied on the same data it was trained on.
Apply Forecast
This operator receives a trained Forecast Model (e.g. the ARIMA model) and creates the forecast for the time series it was trained on.
Default Forecast
This operator trains a Default Forecast model (predicting single value) on time series data to perform a forecast.
Function and Seasonal Component Forecast
This operator trains a Function and Seasonal Forecast model (combining fitted function and seasonal component values) on time series data to perform a forecast.
Holt-Winters
This operator trains a Holt-Winters model (triple exponential smoothing) on time series data to perform a forecast.
Input
example set
The ExampleSet which contains the time series data as an attribute.