Generate Multi-Label Data
Synopsis
This operator generates a multi-label ExampleSet based on numerical attributes. The number of examples, lower and upper bounds of attributes can be specified by the user.
Description
The Generate Multi-Label Data operator generates an ExampleSet with 5 numerical attributes and 3 label attributes. If the regression parameter is set to false, then the labels have two possible values i.e. positive or negative. Otherwise, the labels have real values. The number of examples to be generated can be specified by the number examples parameter. The upper and lower bounds of the numerical values can be specified by the attributes upper bound and attributes lower bound parameters. This operator is used for generating a random ExampleSet for testing purposes.
Output
output
The Generate Multi-Label Data operator generates a multi-label ExampleSet based on numerical attributes which is delivered through this port. The meta data is also delivered along with the data.This output is the same as the output of the Retrieve operator.
Parameters
Number examples
This parameter specifies the number of examples to be generated.
Regression
This parameter specifies if multiple labels for regression tasks should be generated. If this parameter is set to false, then the labels have two possible values i.e. positive or negative. Otherwise, the labels have real values.
Attributes lower bound
This parameter specifies the minimum possible value for the attributes to be generated. In other words this parameter specifies the lower bound of the range of possible values of regular attributes.
Attributes upper bound
This parameter specifies the maximum possible value for the attributes to be generated. In other words this parameter specifies the upper bound of the range of possible values of regular attributes.
Use local random seed
This parameter indicates if a local random seed should be used for randomization. Using the same value of local random seed will produce the same ExampleSet. Changing the value of this parameter changes the way examples are randomized, thus the ExampleSet will have a different set of values.
Local random seed
This parameter specifies the local random seed. This parameter is only available if the use local random seed parameter is set to true.